Identification	Subject	MATH310, Applied Differential Equations A, 6 ECTS		
	Department	Mathematics		
	Program	Undergraduate		
	Term	Fall, 2025		
	Instructor	Lala Atamova		
	E-mail:	ljafarova@khazar.org		
	Phone:			
	Classroom/hours	Tuesday: 13:40-15:10, Thursday: 13:40-15:10.		
Prerequisites	Applied Differential Equations is a second-year, first-semester course. The			
	prerequisite is Calculus 2.			
Language	English			
Compulsory/Elective	Required			
Required textbooks	Core Textbooks:			
and course materials	1. William E.Boy	ce and Richard C. DiPrima, Elementary Differential		
	Equations and E	Boundary Value problems, 10th edition, 2012		
	Supplementary book			
	1. Dennis G. Zill, Warren S. Wright, and Michael R. Cullen, Differential			
	Equations with	Equations with Boundary-Value Problems, 8th edition, 2013, 673 p.		
Course outline	Applied differential equations play a vital role in understanding concepts across science, engineering, economics, computer science, and other disciplines. This			
	course covers both analytical and numerical methods for solving first-order and			
	higher-order ordina	ry differential equations (ODEs), with a strong emphasis on		
	real-world applications. Students will explore the mathematical modeling of			
	physical systems, such as electrical circuits and population dynamics. Common			
	topics include Laplace transforms, Fourier series, and matrix methods for			
	systems of ODEs.			
Course objectives	Applied differential equations courses aim to equip students with the ability to			
	model real-world phenomena, solve these models both analytically and			
	numerically, and understand the fundamental theory behind differential			
	equations. Course objectives include learning to identify different types of			
	differential equations, applying analytical techniques to find solutions,			
	understanding the conditions for existence and uniqueness of solutions, and			
		sing tools such as Laplace transforms and Fourier analysis.		
Learning outcomes		ourse the students should be able to:		
	_	entify different types of differential equations,		
		a given function is a solution to a particular differential		
		y the theorems for existence and uniqueness of solutions to		
	differential equ	nations appropriately;		
	Distinguish bet			
	` ′	non-linear differential equations;		
	1 ' '	ry and partial differential equations;		
		eneous and non-homogeneous differential equations;		
	Solve ordinary	differential equations and systems of differential equations		
	using:			

(a) Direct integration (b) Separation of variables (c) Methods of undetermined coefficients and variation of parameters and interpret their qualitative behavior, Determine particular solutions to differential equations with given initial conditions. Analyze real-world problems such as motion of a falling body, compartmental analysis, free and forced vibrations, etc.; use analytic technique to develop a mathematical model, solve the mathematical model and interpret the mathematical results back into the context of the original problem. Apply ideas from linear algebra in order to solve single linear ordinary differential equations and systems of such equations, • Model certain physical phenomena using differential equations and reinterpret their solutions physically, Apply the Laplace transform for solving differential equations. **Teaching methods** Lecture **Group discussion** X **Experiential exercise** X **Simulation** Case analysis Course paper X Others Evaluation Date/deadlines Percentage (%) Methods Midterm Exam 30 Case studies **Class Participation Quizzes** 20(4 quizzes) **Activity Project** Laboratory work **Final Exam** 40 Others Total 100 **Policy Preparation for class** The structure of this course makes your individual study and preparation outside the class extremely important. The lecture material will focus on the major points introduced in the text. Reading the assigned chapters and having some familiarity with them before class will greatly assist your understanding of the lecture. After the lecture, you should study your notes and work relevant problems and cases from the end of the chapter and sample exam questions. Throughout the semester we will also have a large number of review sessions. These review sessions will take place during the regularly scheduled class

periods.

Quizzes and examinations

Quizzes may be given unannounced throughout the term. There will be no make-up quizzes.

Withdrawal (pass/fail)

This course strictly follows grading policy of the School of Science and Engineering. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year.

Cheating/plagiarism

Cheating or other plagiarism during the Quizzes, Mid-term and Final Examinations will lead to paper cancellation. In this case, the student will automatically get zero (0), without any considerations.

Professional behavior guidelines

The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly prohibited.

Ethic

Use of any electronic devices is prohibited in the classroom. All devices should be turned off before entering class. This is a university policy and <u>violators will</u> <u>be reprimanded accordingly!</u>

Students should not arrive in late to class!

	Tentative Schedule				
Week	Date/Day (tentative)	Topics	Textbook/ Assignments		
1	16.09.25 18.09.25	Linear Equations; Method of integrating factorSeparable equations	2.1, 2.2		
2	23.09.25 25.09.25	 Exact equation, integrating factors Homogeneous equations with constant coefficients 	2.6, 3.1		
3	30.09.25 02.10.25	 Solutions of linear homogeneous equations; the Wronskian Complex roots of the characteristic equation 	3.2, 3.3, Quiz (5 pts)		
4	07.10.25 09.10.25	Repeated roots; Reduction of orderNonhomogeneous Equations	3.4, 3.5		
5	14.10.25 16.10.25	Method of Undetermined CoefficientsVariation of parameters	3.5, 3.6		
6	21.10.25 23.10.25	Homogeneous equations with constant coefficientsPractice	4.2		
7	28.10.25 30.10.25	The Method of Undetermined Coefficients.	4.3, 4.4 Quiz (5 pts)		

		The method of variation of parameters	
8	04.11.25 06.11.25	Definition of the Laplace TransformSolution of Initial Value Problem	6.1, 6.2
9	11.11.25 13.11.25	Midterm Exam Step Functions	6.3
10	18.11.25 20.11.25	Review of MatricesPractice	7.2
11	25.11.25 27.11.25	 Systems of Linear Algebraic Equations; Linear independence; Eigenvalues; Eigenvectors Practice 	7.3 Quiz (5 pts)
12	02.12.25 04.12.25	 Homogeneous Linear systems with Constant coefficients Practice 	7.5
13	09.12.25 11.12.25	Complex EigenvaluesPractice	7.6
14	16.12.25 18.12.25	Fundamental MatricesPractice	7.7 Quiz (5 pts)
15	23.12.25 25.12.25	 Repeated Eigenvalues, Nonhomogeneous Linear Systems Practice 	7.8
	TBA	Final Exam	

This syllabus is a guide for the course and any modifications to it will be announced in advance.